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Abstract

Consensus between independent reads improves the accuracy of genome and transcriptome analyses, however lack of
consensus between very similar sequences in metagenomic studies can and often does represent natural variation of
biological significance. The common use of machine-assigned quality scores on next generation platforms does not
necessarily correlate with accuracy. Here, we describe using the overlap of paired-end, short sequence reads to identify
error-prone reads in marker gene analyses and their contribution to spurious OTUs following clustering analysis using
QIIME. Our approach can also reduce error in shotgun sequencing data generated from libraries with small, tightly
constrained insert sizes. The open-source implementation of this algorithm in Python programming language with user
instructions can be obtained from https://github.com/meren/illumina-utils.
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Introduction

Massively parallel sequencing (MPS) of 16S rRNA gene

amplicons has revolutionized our understanding of microbial

ecology and diversity. Initial marker gene studies that collected

several thousand amplicon sequences per sample using the Roche

GS20 platform revealed that microbial diversity significantly

exceeded estimates based upon traditional taxonomy and capillary

electrophoresis (CE) sequencing [1,2]. Low-abundance taxa that

MPS marker genes detect through the collection of large

molecular datasets relative to CE sequencing studies account for

most of the expanded diversity. Yet, random sequencing errors

can inflate the number of observed Operational Taxonomic Units

(OTUs) in analyses that rely upon de novo clustering methods and

therefore challenge the accuracy of microbial diversity estimates

[3,4].

Relative to pyrosequencing on the Roche GS20 and FLX

sequencers, the Illumina platform offers significantly increased

sequencing depth and a robust paired-end sequencing technology

that recovers DNA sequence from the both ends of a single DNA

template. Quality filtering methods for Illumina reads generally

rely upon machine-reported Q-scores and empirically defined

thresholds to eliminate noise. Varying the stringency of these

thresholds changes the sensitivity and specificity of the outcome,

without guaranteeing an accurate basecall [5,6]. Agreement

between overlaps of paired-end reads in MPS analyses can guide

quality filtering to increase sequence accuracy. For marker gene

analyses, the selection of primer sites within well-conserved regions

will control the library insert size and specify the extent of overlap

between paired-end reads. Alternatively, the insert size of shotgun

genomic or metagenomic libraries can be constrained to a narrow

range by size selection that also can control the extent of overlap

for the forward and reverse reads.

Zhou et al. [7] previously described the use of overlapping reads

to improve amplicon sequence quality, and Masella et al. [8]

recently developed a fast aligner (PANDAseq) for overlapping

paired-end reads that employs Q-scores to solve disagreements

between mismatches and retain a larger number of high-quality

reads compared to naı̈ve approaches. However, to the best of our

knowledge, popular Q-score based filtering methods for Illumina

reads have not been benchmarked against methods that benefit

from the overlapping regions of paired-end reads for quality

filtering.

Here we present a set of multiplexing fusion primers, a library

preparation method and associated analysis software to generate

very high quality short reads on Illumina platforms using paired-

end technology. We evaluate this strategy by applying it to the V6

region of the 16S rRNA gene amplified from control and

environmental samples, and compare the quality control proce-

dure we present with two other quality filtering approaches [5,6]

to discuss the sensitivity and specificity limitations of Q-score-

based quality filtering methods.

Materials and Methods

Sampling and Library Preparation
We amplified three separate replicates of the V6 region of

ribosomal RNAs from Escherichia coli (E. coli) genomic DNA

isolated from pure culture and from 10 metagenomic microbial

DNA samples isolated from raw sewage. Custom fusion primers

for PCR consisted of the Illumina adaptor, 12 different inline

barcodes (forward primer) or 8 dedicated indices (reverse primer),
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and conserved regions of the V6 sequence (Figure 1). This use of

96 unique barcode-index combinations allows multiplexing 96

samples per lane. Paired indices with dual indexing reads could

further increase the level of multiplexing. For each of the 33

libraries, we carried out the PCR in triplicate 33 uL reaction

volumes with an amplification cocktail containing 1.0 U Platinum

Taq Hi-Fidelity Polymerase (Life Technologies, Carlsbad CA), 1X

Hi-Fidelity buffer, 200 uM dNTP PurePeak DNA polymerase mix

(Pierce Nucleic Acid Technologies, Milwaukee, WI), 1.5 mM

MgSO4 and 0.2 uM of each primer. We added approximately

10–25 ng template DNA to each PCR and ran a no-template

control for each primer pair. Cycling conditions were: an initial

94uC, 3 minute denaturation step; 30 cycles of 94uC for 30s, 60uC
for 60s, and 72uC for 90s; and a final 10 minute extension at 72uC.

The triplicate PCR reactions were pooled after amplification and

purified using a Qiaquick PCR 96-well PCR clean up plate

(Qiagen, Valencia CA). Purified DNA was eluted in 30 uL of

Qiagen buffer EB. PicoGreen quantitation (Life Technologies,

Carlsbad CA) provided a basis for pooling equimolar amounts of

product. After size-selecting products of 200–240 bp on 1%

agarose using Pippin Prep (SageScience, Beverly MA), we

employed qPCR (Kapa Biosystems, Woburn MA) to measure

concentrations prior to sequencing on one lane of an Illumina

Hiseq 100 cycle paired-end run. The remaining 90% of the lane

was dedicated to PhiX DNA and served as the run control. The

combination of CASAVA 1.8.2 to identify reads by index and a

custom Python script that resolved barcodes demultiplexed the

datasets.

Complete Overlap Quality Filtering
Requiring 100% consensus between the overlapping regions of

the forward and reverse paired-end sequencing reads eliminates

the vast majority of sequencing errors. Both the first and second

reads in paired-end sequencing runs on an Illumina platform using

100 cycles in each direction will span the entire V6 region and

extend 15–20 nt into the proximal and the distal PCR primer sites.

The quality filtering procedure takes advantage of the complete

overlap of the forward and reverse reads to retain or discard the

paired-end reads according to their 100% consensus between the

primer sites. The required quality control operations for each

paired-end sequencing read include: 1) compute the reverse-

complement for the second read; 2) Within the last 30 nt of both

the forward read and the reverse complemented second read

search for the initial 6 nucleotides of the distal V6 primer; 3)

Discard sequence pairs that do not perfectly match the initial 6 nt

of distal primer in both reads; 4) Within the initial 40 nt of both the

forward read and the reverse complemented second read search

for the initial 10 nucleotides that matches a consensus sequence for

the four proximal primers (967F-AQ, 967F-UC3, 967F-PP and

967F-UC12; see Table S1 for details); 5) If either of the reads fail

to match the consensus, discard the pair; 6) Trim the proximal

(including its barcode) and distal primers from each read; 7) Retain

the sequence pair as a quality-passed V6 sequence if they share

100% consensus between the primer sites. The URL https://

github.com/meren/illumina-utils provides access and user in-

structions for the open-source implementation of the V6 complete

overlap analysis program that analyzes raw output files of

CASAVA version 1.8.0 or higher. It also produces graphics for

visualization of machine-reported quality scores for reads that

survived the quality filtering and reads that failed, and reports

overall statistics about the analysis for quality assurance.

Quality Score Based Quality Filtering
To compare results of complete overlap quality filtering with

quality-based filtering, we analyzed raw sequence data using two

recently published methods that rely on Q-scores. We used the

method described by Bokulich et al. [5] with suggested parameters

p = 0.75, q = 3, r = 3, and n = 0, where p defines the ratio of the

trimmed read length relative to the original read length, q is the Q-

score threshold that classifies a base as low-quality, r is the

minimum number of consecutive bases with Q-scores lower than q

from the beginning of the read to identify the location of quality

trimming, and n is the number of ambiguous bases permitted in a

quality trimmed read. We also tested the quality filtering technique

recommended by Minoche et al. [6] using a default length value

p = 0.75 as recommended in [5]. We applied the quality-based

filtering methods independently to each of the reads in a paired-

end sequence. If either of the reads exhibited low quality by these

criteria, we discarded both reads. For the convenience of the

reader, we refer to these two methods as "Minoche" and

"Bokulich" throughout the manuscript.

Clustering
To compare OTU clustering performance of each quality

filtering method, we clustered each sample with QIIME (v1.5) [9]

using the default UCLUST method [10] and a 97% similarity

threshold for OTU formation with minimum cluster size of 2.

Because complete overlap analysis consistently yielded the smallest

number of reads for each sample (Table S2), we randomly

subsampled reads generated by Bokulich and Minoche 5 times to

prevent any bias in clustering results and clustered the result of

each subsampling independently to report the mean number of

OTUs for each sample.

Figure 1. Structure of V6 fusion primers used to generate amplicon libraries for Illumina sequencing.
doi:10.1371/journal.pone.0066643.g001
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Results

We used complete overlap analysis, which relies upon consensus

between paired-end reads rather than Q-scores, to identify

sequencing errors in an Illumina HiSeq dataset of V6 amplicon

sequences from 33 samples. From a total of 3,683,211 paired-end

amplicon reads, complete agreement across the overlap identified

2,707,801 (73.52%) high quality sequences. Table S2 describes the

number of reads that failed by sample, read direction, and the

number of undetermined residues (Ns) present. For comparison,

we analyzed the same 33 samples with quality filtering methods

that rely on Q-scores to identify low quality reads described by

Bokulich et al. [5] and Minoche et al. [6]. Quality filtering based

upon Q-scores identified, on average, similar percentages (86–

88%) of passed reads whereas the complete overlap analysis

identified an average pass rate of 63% across all samples (Figure 2).

Despite the great variation between the numbers of pairs in each

individual sample (min: 6,785; max: 828,243, mean: 111,613), the

ratio of reads that were identified as low quality was stable among

the samples for each method (Figure 2).

To explain the difference in numbers, we examined the fate of

paired-end reads that the different filtering approaches identified

as low or high quality. Our analysis showed that both Q-score-

based analysis methods classified 561,245 paired-end reads as

high-quality, that complete overlap analysis rejected as low-

quality. Similarly, Q-score based methods rejected 7,450 paired-

end reads that complete overlap identified as having high quality

(Figure 3). With its default parameters, Bokulich identified 29,658

additional high-quality pairs that Minoche and complete overlap

analysis rejected (Figure 3A). On the other hand, Minoche rejected

14,330 pairs that both Bokulich and complete overlap analysis

identified as high-quality (Figure 3B).

We clustered each sample at 97% to compare the number of

OTUs in each sample for each of the three filtering methods (97%

similarity is equivalent to 1 nt difference between ,62 nt V6

reads). The number of OTUs identified in Bokulich and Minoche

filtered reads yielded a remarkably similar number of OTUs for

each sample, and the ratio of the number of clusters equaled to an

average of 0.99 (standard deviation (SD) = 0.09) for Bokulich over

Minoche. In contrast, the number of OTUs identified in reads

filtered by the complete overlap method were consistently smaller

with an average ratio of 0.70 (SD = 0.03) (Figure 4). The relative

number of OTUs did not change at neighboring clustering

thresholds of 96% (2 nt difference) (Bokulich/Minoche ratio of

0.99 (SD = 0.03); complete overlap ratio of 0.71 (SD = 0.12)) and

100% (0 nt difference) (Bokulich/Minoche ratio of 0.99

(SD = 0.02)); complete overlap ratio of 0.68 (SD = 0.03). Raw

numbers of clusters for each sample are reported in Table S3.

Discussion

Requiring perfect compliance between paired reads generates

high-quality short sequences from Illumina paired-end reads from

libraries that contain small amplicons or short insert genomic

libraries. Short reads generated by this method contain a

remarkably small number of random sequencing errors. In order

for a read containing a random sequencing error to pass the

filtering, not only must the location of the error be the same, but

also the nucleotide changes must be complementary, which

together render the probability very low. However, this method is

incapable of reducing the number of PCR errors that occur during

the original library amplification or the amplification during the

cluster formation on the Illumina flow cell.

Our analyses with the V6 region of the 16S rRNA gene

generated ,62 nt sequences from each high quality paired-end

read. ,62 nt is equivalent to ,30.7% of the information in a pair

of two 101 nt reads. Following quality filtering, the final dataset

only contained 22.56% of the information generated by the

sequencer. The great reduction in the throughput makes

overlapping region-based filtering methods unsuitable for projects

where the main goal is the maximum throughput and/or

maximum read length. However, they are promising for studies

that demand very high accuracy.

Q-score-based quality filtering methods rely on PHRED-like

algorithms [11,12] to determine the accuracy of base calls. Even

though the arbitrary Q-score thresholds recommended by

empirical studies seem to be relatively successful at removing very

low quality reads (Figure 3), methods that rely on Q-scores can

Figure 2. Comparison of three filtering methods. The top panel shows the ratio of pairs identified as low quality versus all pairs analyzed for
each method. The total number of pairs in each dataset is shown in the bottom panel.
doi:10.1371/journal.pone.0066643.g002
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over-estimate the accuracy. Overall, the number of clusters

identified in reads filtered with complete overlap method was

approximately 30% less than the number of clusters identified in

reads that were filtered by Q-scores-based methods for each

sample (Figure 4).

Comparison of the complete overlap analysis with two recently

published quality filtering approaches by Bokulich et al. [5] and

Minoche et al. [6] showed that while they perform well at

identifying most low-quality reads, they tend to identify as high-

quality many reads that contain random sequencing errors

revealed by the complete overlap analysis (Figure 3). This is not

because they are implemented poorly, but because Q-scores can

be misleading. For instance, area a-1 in Figure 3 shows the

number of reads that were identified as high quality by all three

methods. In contrast, area a-2 shows reads that were identified as

high quality only by the two Q-score-based methods. The

similarity between these two areas with respect to the mean

quality scores (Figure 3, bottom panel) shows the difficulty of

Figure 3. Paired-end reads from 33 samples that passed and failed the quality filtering by individual methods are compared in
Venn diagrams. The mean quality scores of paired-end reads from the numbered regions in Venn diagrams are shown below. In each panel, the
top and bottom lines show read 1 and read 2, respectively. The mean quality of each pair at each nucleotide position is also shown with a smooth
line.
doi:10.1371/journal.pone.0066643.g003
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identifying reads that contain random sequencing errors via Q-

score-based approaches alone. This emphasizes the importance of

relying on methods that incorporate knowledge of the experimen-

tal design, e.g. degree of overlap or the existence of technical

replicates, when the read quality is of utmost priority. The

contribution of false positives (reads wrongly identified as high-

quality) becomes clear when resulting reads are used for cluster

analysis. After subsampling to the smallest number of reads,

clustering analysis consistently resulted in more OTUs for reads

quality-filtered by score based approaches.

The Bokulich method [6] performs very much like Minoche [5],

especially with the suggested default parameters (p = 0.75, q = 3,

n = 0, r = 3). With these parameters, Bokulich trims any read from

where the first 3 consecutive bases (r = 3) remain below Q3 (q = 3),

then, if the resulting read is not less than 75% of the original read

in length (p = 0.75), and has 0 ambiguous bases (n = 0), it identifies

it as a high quality read. Minoche et al. performs a similar step by

removing B-tails (group of low quality, ambiguous bases at the end

of reads). When n = 0 for Bokulich, which is the default behavior

for Minoche, both methods remove any read containing an

ambiguous base after quality trimming. The major difference

between two approaches is the extra step of ‘‘Q33’’ filtering

performed by Minoche. This algorithm calculates the length of the

‘‘B-tail’’ trimmed reads and retains the read only if two thirds of

bases in the first half of the read have Q-scores over Q30. The

sequences removed by ‘‘Q33’’ filtering explains most of the

discrepancy between two approaches with respect to the number

of reads that are identified as low quality. In our analyses, Bokulich

identified 29,658 paired-end reads as high quality (area a-4 in

Figure 3), which were recognized as low quality by both Minoche

and complete overlap analysis. Figure 3 shows the noticeable

difference between mean Q-scores between area a-4 and area a-1.

However, the clustering analysis results indicate that despite the

more sophisticated utilization of Q-scores by Minoche, the

number of OTUs observed with either of these methods is very

similar, and they perform similarly well at reducing noise.

Although the Minoche trimming algorithm was optimized for

trimming shotgun genomic sequences, it proves to be suitable for

amplicon sequence quality filtering.

None of the quality filtering methods used in this study are able

to reduce PCR error, which is an outstanding issue [13]. However,

the ability to remove the majority of random sequencing errors

improves the accuracy of bacterial diversity estimates. Although

we used V6 region to demonstrate library preparation and quality

filtering, this complete overlap approach can also be used to

generate very high quality reads from shotgun metagenomic

libraries. With the increasing read lengths of Illumina platforms

(e.g., 250 nt paired-end reads on the MiSeq), it can be used to

obtain longer high quality reads across multiple hypervariable

regions of the 16S rRNA gene.

Supporting Information

Table S1 Combination of 967F-AQ, 967F-UC3, 967F-PP and

967F-UC12 primers.

(DOC)

Table S2 Number of reads that failed during the filtering process

for each method by sample, read direction, and the number of

undetermined residues (Ns) present.

(XLS)

Table S3 Number of clusters identified at 96%, 97% and 100%

sequence similarity thresholds in reads filtered by Bokulich,

Minoche and Complete Overlap methods.

(XLSX)
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Figure 4. Comparison of the relative cluster counts and the absolute number of clusters identified in reads filtered by three
different methods. The top panel shows the relative number of 97% OTUs for each method, with the method that produced the largest number
assigned a value of 1.0. The bottom panel presents the actual number of OTUs for each method.
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